ROOTLESS PAIRS OF $E E_{8}$-LATTICES

ROBERT L. GRIESS, JR. AND CHING HUNG LAM

Abstract

We describe a classification of pairs M, N of lattices isometric to $E E_{8}:=\sqrt{2} E_{8}$ such that the lattice $M+N$ is integral and rootless and such that the dihedral group associated to them has order at most 12. It turns out that most of these pairs may be embedded in the Leech lattice. Complete proofs will appear in another article. This theory of integral lattices has connections to vertex operator algebra theory and moonshine.

1. Introduction

Associated to a sublattice S of an integral lattice L is an orthogonal transformation of order 2 on Euclidean space (defined to be -1 on S and 1 on the annihilator of S). This involution leaves L invariant if S satisfies the RSSD condition $(2 L \leq S+\operatorname{ann}(S))$ [GrBWY, GrBWY2]. An example of such an S is $\sqrt{2} U$, where U is an integral unimodular lattice, such as $E E_{8}:=\sqrt{2} E_{8}$. A pair of RSSD sublattices gives a dihedral group in the isometry group of L.

In this article, we describe our classification of pairs of $E E_{8}$-lattices which span an integral and rootless lattice and whose associated involutions (isometries of order 2) generate a dihedral group of order at most 12 . There are exactly 11 such pairs. Most can be realized inside the Leech lattice, which we denote by Λ. We refer to an upcoming article [GL] for proofs and details.

This work may be considered purely as a study of positive definite integral lattices. Our real motivation, however, is the evolving theory of vertex operator algebras (VOA) and their automorphism groups. ${ }^{1}$

2. Motivation from VOA theory

The primary connection between the Monster and vertex operator algebras was established in [FLM]. In [Mi], Miyamoto gave a theory for defining involutions on a VOA. Suppose that $(V, Y, \omega, \mathbf{1})$ is a VOA. A degree 2 element $e \in V$ is called a rational conformal vector of central charge $1 / 2$ if the components of $Y(e, z)=$ $\sum_{n \in \mathbb{Z}} e_{n} z^{-n-1}$ (The e_{i} are in $\left.\operatorname{End}(V)\right)$ together with $I d_{V}$ span a Virasoro Lie algebra with central charge $\frac{1}{2}$ and the subVOA of V generated by w is a simple VOA, so is isomorphic to simple Virasoro VOA $L\left(\frac{1}{2}, 0\right)$.

The simple Virasoro VOA $L\left(\frac{1}{2}, 0\right)$ has only three irreducible modules, $L\left(\frac{1}{2}, 0\right)$, $L\left(\frac{1}{2}, \frac{1}{2}\right), L\left(\frac{1}{2}, \frac{1}{16}\right)$, and the fusion rules give two formulas for an involution on V.

Since $L\left(\frac{1}{2}, 0\right)$ is rational, i.e., all $L\left(\frac{1}{2}, 0\right)$-modules are completely reducible, we can decompose $V:=V_{0} \oplus V_{\frac{1}{2}} \oplus V_{\frac{1}{16}}$ into the direct sum of V_{c}, where V_{c} denotes the sum of all $L\left(\frac{1}{2}, 0\right)$-submodules of V isomorphic to $L\left(\frac{1}{2}, c\right)$.

[^0](1) Define a linear map $\tau_{e}: V \rightarrow V$ to be 1 on $V_{0} \oplus V_{\frac{1}{2}}$ and -1 on $V_{\frac{1}{16}}$. Miyamoto [Mi] showed that τ_{e} is always an automorphism of V. This automorphism is called a Miyamoto involution if τ_{e} has order 2.
(2) If $\tau_{e}=I d_{V}$, i.e., $V_{\frac{1}{16}}=0$, then the linear map σ_{e} defined by 1 on V_{0} and -1 on $V_{\frac{1}{2}}$ is also an automorphism. It is called a Miyamoto involution of σ-type.

These involutions have been studied a lot. Miyamoto proved [Mi1] the important result that there is a bijection between the conjugacy class of $2 A$ involutions in the Monster simple group and conformal vectors of central charge $\frac{1}{2}$ in the moonshine vertex operator algebra V^{\natural}.
2.1. Lattice type vertex operator algebras. Recall that a lattice VOA V_{L} associated with an even positive definite lattice L is given by $V_{L}=S\left(\hat{\mathfrak{h}}^{-}\right) \otimes \mathbb{C}[L]$, as a vector space, where $\mathfrak{h}:=\mathbb{C} \otimes L, \hat{\mathfrak{h}}^{-}=\oplus_{n=1}^{\infty} t^{-n} \otimes \mathfrak{h}, S\left(\hat{\mathfrak{h}}^{-}\right)$is the symmetric algebra of $\hat{\mathfrak{h}}^{-}$and $\mathbb{C}[L]=\operatorname{span}_{\mathbb{C}}\left\{e^{\alpha} \mid \alpha \in L\right\}$ is the group algebra of L.

Let V_{L} be a lattice VOA. It is common to study an involution on V which is a "lift" of the -1 map on L. The standard lift of -1 , called θ, acts as -1 on $\hat{\mathfrak{h}}^{-}$and takes e^{α} to $e^{-\alpha}$, for all α. The fixed point subVOA of θ is denoted V_{L}^{+}.

For VOAs of lattice type V_{L} or V_{L}^{+}, there are two known explicit general formulas for rational conformal vectors of central charge $1 / 2$.

First formula:

When α is a norm 4 vector of L,

$$
\begin{equation*}
e=\frac{1}{16}\left(t^{-1} \otimes \alpha\right)^{2} \pm \frac{1}{4}\left(e^{\alpha}+e^{-\alpha}\right) \tag{1}
\end{equation*}
$$

is a rational conformal vector of central charge $1 / 2$.

Second formula:

When E is a sublattice of $L, E \cong E E_{8}$,

$$
\begin{equation*}
e=\frac{1}{8} q+\frac{1}{32} \sum_{\alpha \in E /\{ \pm 1\}} \varphi(\alpha)\left(e^{\alpha}+e^{-\alpha}\right) \tag{2}
\end{equation*}
$$

is also a rational conformal vector of central charge $1 / 2$, (here q is a sum $\sum_{i}\left(t^{-1} \otimes\right.$ $\left.u_{i}\right)^{2}$, where u_{i} is an orthonormal basis of $\mathbb{C} \otimes E ; \varphi$ is a homomorphism $\left.E \rightarrow\{ \pm 1\}\right)$.

This second formula explains our interest in $E E_{8}$.
2.2. Why rootless? If L is rootless, V_{L}^{+}has zero degree 1 term and so (by general VOA theory) the degree 2 part is a commutative algebra (generally nonassociative). In this case, the automorphism group of V_{L}^{+}is finite (not generally true for VOAs). Moreover, it is conjectured [LSY] that the two kinds of conformal vectors in (1) and (2) will exhaust all the rational conformal vectors of central charge $1 / 2$ in V_{L}^{+} if L is rootless. This conjecture was proved when L is a $\sqrt{2}$ times a root lattice or the Leech lattice [LSY, LS] but it is still open if L is a general rootless lattice. The results of this paper could help settle this conjecture.
2.3. Why dihedral groups of order at most 12 ? We may consider pairs of Miyamoto involutions and what they generate. For a general VOA, this is an arbitrary dihedral group. In the case of V_{L}^{+}when L is rootless, the possibilities are limited to dihedral of order at most 12, by a recent theorem of Shinya Sakuma [Sa]. In fact, his hypotheses are more general: the VOA need not be lattice type, but it should be defined over \mathbb{R} with a positive definite form, have no negative terms, the degree 0 component should be 1-dimensional, and degree 1 component should be 0 -dimensional. His proof is quite technical.

Even without the Sakuma theorem, one knows that the restriction to dihedral groups of order at most 12 is relevant to a study of sporadic groups. Consider the 2A class of involutions in the Monster [GMS] and classes within the Baby Monster, $F i_{24}$, etc., discussed in [GINo].

3. The classification of integral, Rootless $E E_{8}$-Pairs

In this section, we shall discuss our classification of $E E_{8}$-pairs. The following is our main theorem.

Theorem 3.1. Suppose that in Euclidean space, the integral lattice L is the sum $M+N$ of sublattices, where $M \cong N \cong E E_{8}$, and L is rootless. Let t_{M} be the involution defined by M and let t_{N} be the involution defined by N. Assume that the dihedral group $\left\langle t_{M}, t_{N}\right\rangle$ has order at most 12. Then the possibilities for L are listed in Table 1 and all these possibilities exist. The lattices in Table 1 are unique up to isometry of pairs M, N. Except for $\mathrm{DIH}_{4}(15)$, all of them embed as sublattices of the Leech lattice.

Table 1. NREE8SUMs: integral rootless lattices which are sums of $E E_{8} \mathrm{~s}$

Name	$\left\langle t_{M}, t_{N}\right\rangle$	Isometry type of L (contains)	$\mathcal{D}(L)$	In Leech?
$D I H_{4}(12)$	$D i h_{4}$	$\geq D D_{4}^{\perp 3}$	$1^{4} 2^{6} 4^{2}$	Yes
$D I H_{4}(14)$	$D i h_{4}$	$\geq A A_{1}^{\perp 2} \perp D D_{6}^{\perp 2}$	$1^{4} 2^{8} 4^{2}$	Yes
$D I H_{4}(15)$	$D i h_{4}$	$\geq A A_{1} \perp E E_{7}^{\perp 2}$	$1^{2} 2^{14}$	No
$D I H_{4}(16)$	$D i h_{4}$	$\cong E E_{8} \perp E E_{8}$	2^{16}	Yes
$D I H_{6}(14)$	$D i h_{6}$	$\geq A A_{2} \perp A_{2} \otimes E_{6}$	$1^{7} 3^{3} 6^{2}$	Yes
$D I H_{6}(16)$	$D i h_{6}$	$\cong A_{2} \otimes E_{8}$	$1^{8} 3^{8}$	Yes
$D I H_{8}(15)$	$D i h_{8}$	$\geq A A_{1}^{\perp 7} \perp E E_{8}$	$1^{10} 4^{5}$	Yes
$D I H_{8}\left(16, D D_{4}\right)$	$D i h_{8}$	$\geq D D_{4}^{\perp 2} \perp E E_{8}$	$1^{8} 2^{4} 4^{4}$	Yes
$D I H_{8}(16,0)$	$D i h_{8}$	$\cong B W_{16}$	$1^{8} 2^{8}$	Yes
$D I H_{10}(16)$	$D i h_{10}$	$\geq A_{4} \otimes A_{4}$	$1^{12} 5^{4}$	Yes
$D I H_{12}(16)$	$D i h_{12}$	$\geq A A_{2} \perp A A_{2}$ $\perp A_{2} \otimes E_{6}$	$1^{12} 6^{4}$	Yes

$X^{\perp n}$ denotes the orthogonal sum of n copies of the lattice X.

Notation 3.2. A_{1}, \ldots, E_{8} denote the root lattices of the corresponding type;
$A A_{1}, \ldots, E E_{8}$ denote the lattices isometric to $\sqrt{2}$ times the lattices A_{1}, \ldots, E_{8}; $\mathcal{D}(L)=L^{*} / L$ is the discriminant group of L;
$D I H_{r}(s)$ means a pair of $E E_{8}$ lattices (M, N) such that t_{M}, t_{N} generates a dihedral group of order r and $\operatorname{rank}(M+N)=s$;
$D I H_{8}(16, P)$ means $D I H_{8}(16)$ and that $P=\operatorname{ann}_{M}(N) \cong \operatorname{ann}_{N}(M)$.
3.1. Some highlights of the proof. Next, we shall discuss the main steps for the classification. We go through cases $\left|t_{M} t_{N}\right|=2,3,4,5,6$. Our respective analyses are called DIH_{4}-theory, DIH_{6}-theory, $D I H_{8}$-theory, DIH H_{10}-theory, DIH H_{12}-theory.

In $\left\langle t_{M}, t_{N}\right\rangle$, let $g:=t_{M} t_{N}$. Then $\mathbb{Z}[\langle g\rangle]$ acts on L and it acts on $J:=\operatorname{ann}_{L}\left(F i x_{L}(g)\right)$, where $\operatorname{Fix}_{L}(g)$ denotes the set of all fixed points of g in L. The action is that of as a ring of integers in a number field when $|g|$ is prime.

The main idea is to determine possibilities for $F i x_{L}(g), J, a n n_{M}(N), a n n_{N}(M)$ and related sublattices. Exhaustive case by case analysis gives a list of candidates. In all cases, the candidates are proved unique, given certain things we deduce about their sublattices.

First, we observe that $\left\langle t_{M}, t_{N}\right\rangle$ acts faithfully on L and leaves invariant $F i x_{L}(g)=$ $M \cap N$.

Case: $|g|=2,3,5$.
In these cases, we determine all sublattices of E_{8} which are direct summands and whose discriminant group is an elementary abelian p-group for $p=2,3,5$. Exhaustive case by case analysis gives a list of candidates. It turns out $M \cap N$ is isometric to $\sqrt{2}$ times one of these lattices. In fact, $M \cap N \cong 0, A A_{1}, A A_{1} \perp A A_{1}$, or $D D_{4}$ if $|g|=2 ; M \cap N \cong 0$ or $A A_{2}$ if $|g|=3$; and $M \cap N=0$ if $|g|=5$.

Given $M \cap N$, we then analyse J and its sublattices.
When $|g|=2,\left\langle t_{M}, t_{N}\right\rangle$ is a four-group. Then we have $M \cap J=\operatorname{ann}_{M}(N)$, $N \cap J=a n n_{N}(M)$ and $M \cap N \perp a n n_{M}(N) \perp a n n_{N}(M)$ is an index 2 sublattice of L. In this case, the isometry type of L is uniquely determined by $M \cap N$.

When $|g|=3$, we consider the $\mathbb{Z}[\langle g\rangle]$-submodule K generated by $M \cap J$. Then K is a sublattice of J and K is isomorphic as a lattice to $A_{2} \otimes \frac{1}{\sqrt{2}}(M \cap J)$. The possibilities for $M \cap J$ in this case are EE6 or EE8. Again, the isometry type of L is uniquely determined by $M \cap N$.

When $|g|=5, M \cap N=0$. We show that for any norm 4 vector $\alpha \in L$, the $\mathbb{Z}[\langle g\rangle]$-submodule generated by α is isomorphic as a lattice to $A A_{4}$. In fact, we show that $L=M+N$ contains a sublattice U isometric to the orthogonal sum of 4 copies of $A A_{4}$ such that $M \cap U \cong N \cap U \cong A A_{1}^{8}$. The uniqueness of L is then shown by explicit glueings.

Case: $|g|=4,6$.
In each of these cases, let $h:=g^{2}$. Then $(M, M h)$ and $(N, N h)$ are $E E_{8}$ pairs whose associated dihedral group has order 4 or 6 . We then use the results for $D^{2} h_{4}$ and $D i h_{6}$ to deduce the structures of L. It turns out that there is only one possible case for $|g|=6$ but 3 different cases for $|g|=4$.

A proof that the candidates are really rootless is made easier by a magic tool. Most candidates can be embedded in the Leech lattice by direct constructions (and use of a uniqueness result). Since Leech is rootless, so is our candidate L. See the last section for examples of embeddings.

4. Glauberman-Norton subgroups

In [GlNo], Glauberman-Norton computed the centralizers in the Monster of a pair of 2A-involutions. We hope to study these subgroups by promoting pairs M, N of lattices from our list to involutions on the Moonshine VOA. An interesting point is that the Glauberman-Norton subgroups have "Levi factors" which look like index 2 subgroups of a direct product of a pair of Weyl groups modulo centers. Our theory may give a context for this by viewing such a subgroup as acting on the Moonshine VOA. At this time, we can see actions of direct products of Weyl groups on large subVOAs of the Moonshine VOA, in the following way. The Moonshine VOA is a twisted lattice type VOA based on the Leech lattice. The Leech lattice contains sublattices of types $A A_{1}$ or $E E_{8}$ which will give a concrete realization of each pair of $2 A$-involutions in the Glauberman-Norton theory (by Formula (1) or Formula (2)). Since there are examples of tensor products of lattices contained in our $M+N$ when $|g|=3$ or 5 (3.1), we have actions of a finite group with quotient a direct product of Weyl groups on a subVOA of lattice type.

5. Examples of some pairs M, N in the Leech lattice

In this section, we shall give a few examples of $E E_{8}$-pairs M, N in the Leech lattice. Because of space limitations, these are just for the $D I H_{6}$-theory. First, we recall some notation for describing the Leech lattice and its isometries [CS, Gr12].

Notation 5.1. Arrange the set $\Omega=\{1, \ldots, 24\}$ into a 4×6 array such that the six columns forms a sextet. For each codeword in the Golay code $\mathcal{G}, 0$ and 1 are marked by a blanked and non-blanked space, respectively, at the corresponding positions in the array. For example, $\left(1^{8} 0^{16}\right)$ is denoted by the array

$*$	$*$		
$*$	$*$		
$*$	$*$		
$*$	$*$		

By the same notation, every vector in the Leech lattice Λ can be written as the form

$$
X=\frac{1}{\sqrt{8}}\left[X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}\right], \quad \text { juxtaposition of column vectors. }
$$

For example,

$$
\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 2 & 2 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 \\
\hline
\end{array} .
$$

Definition 5.2. Let

$$
A=\frac{1}{2}\left[\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right]
$$

Define a linear map $\xi: \Lambda \rightarrow \Lambda$ by $X \xi=A X D$, where

$$
X=\frac{1}{\sqrt{8}}\left[X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}\right]
$$

is a vector in the Leech lattice Λ and D is the diagonal matrix

$$
\left(\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Recall that ξ defines an isometry of Λ (cf. [CS, p. 288] and [Gr12, p. 97]).
Notation 5.3. Let \mathcal{O} be an octad. Denote by $E(\mathcal{O})$ the sublattice of the Leech lattice Λ which is supported on \mathcal{O}. Then $E(\mathcal{O}) \cong E E_{8}$.

Here are examples for the DIH_{6} cases.
5.0.1. $|g|=3$. In this case, $M \cap N=0$ or $A A_{2}$.

$\mathrm{DIH}_{6}(\mathbf{1 6)}$

Let

$$
\mathcal{O}_{1}=\begin{array}{|ll|l|l|}
\hline * & * & & \\
* & * & & \\
* & * & & \\
* & * & & \\
\hline
\end{array}
$$

be an octad and $M:=E\left(\mathcal{O}_{1}\right) \cong E E_{8}$. We choose a basis $\left\{\beta_{1}, \ldots, \beta_{8}\right\}$ of M, where

$$
\begin{aligned}
& \beta_{1}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc}
4 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \beta_{2}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rc|}
\hline 0 & 4 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \beta_{3}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
4 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{8} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Let N be the lattice generated by the vectors

$\alpha_{1}=\frac{1}{\sqrt{8}}$| 2 | -2 | 2 | -2 | 2 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 | 2 |
| 0 | 0 | 0 | 0 | 0 | 2 |
| 0 | 0 | 0 | 0 | 0 | 2 |
| α_{3} | $=\frac{1}{\sqrt{8}}$0 0 0 0 0 -2
 2 -2 2 -2 2 0
 0 0 0 0 -2 0
 0 0 0 0 2 0 | | | | |

$\alpha_{5}=\frac{1}{\sqrt{8}}$| 0 | 0 | 0 | 0 | 0 | -2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 2 | 0 |
| 2 | -2 | 2 | -2 | 2 | 0 |
| 0 | 0 | 0 | 0 | -2 | 0 |

$\alpha_{7}=\frac{1}{\sqrt{8}}$| -2 | -2 | -2 | -2 | 0 | -2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | -2 | 0 |
| 0 | 0 | 0 | 0 | -2 | 0 |
| 0 | 0 | 0 | 0 | -2 | 0 |

$\alpha_{8}=\frac{1}{\sqrt{8}}$| 1 | 1 | 1 | 1 | -3 | 1 |
| :--- | :--- | :--- | :--- | ---: | ---: |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |.

By checking the inner products, it is easy to shows that $N \cong E E_{8}$. Note that $\alpha_{1}, \ldots, \alpha_{7}$ are supported on octads and thus $N \leq \Lambda$.

In this case, $M \cap N=0$ and $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{8}, \alpha_{1}, \ldots, \alpha_{8}\right\}$ is a basis of $L=M+N$.
The Gram matrix of $L=M+N$ is given by

$$
\left[\begin{array}{rrrrrrrr|rrrrrrrr}
4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 4 & -2 & 0 & 0 & 0 & -2 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 & 0 \\
0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 & 4 & -2 & 0 & -1 & 0 & 0 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 \\
\hline 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & -1 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & -2 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 2 & -1 & 0 & -2 & 0 & 0 & 0 & 0 & 4 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4
\end{array}\right]
$$

By looking at the Gram matrix, it is clear that $L=M+N \cong A_{2} \otimes E_{8}$. The Smith invariant sequence is 1111111133333333 .

$\mathrm{DIH}_{6}(12)$

Let

and $M:=E\left(\mathcal{O}_{2}\right)$. Set $N:=M \xi$, where ξ is the isometry defined in (5.2). Consider

$$
\begin{aligned}
& \gamma_{1}=\frac{1}{\sqrt{8}} \begin{array}{cc|cc|cc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \gamma_{2}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} & 0 & 0 \\
\hline
\end{array}, \\
& \gamma_{3}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & -4 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \gamma_{5}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 4 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \gamma_{4}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 4 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \gamma_{6}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|rr|}
\hline 0 & 0 & 0 & 4 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \gamma_{7}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \gamma_{8}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 0 & 2 & 2 & 2 & 2 & 2 \\
2 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} .
\end{aligned}
$$

Then $\left\{\gamma_{1}, \ldots, \gamma_{8}\right\}$ is a basis of M and $\left\{\gamma_{1} \xi, \ldots, \gamma_{8} \xi\right\}$ is a basis of N.
By the definition of ξ, it is easy to show that $\gamma_{1} \xi=-\gamma_{1}, \gamma_{2} \xi=-\gamma_{2}$. Moreover, for any $\alpha \in M=E\left(\mathcal{O}_{2}\right), \alpha \xi$ is supported on \mathcal{O}_{2} if and only if $\alpha \in \operatorname{span}_{\mathbb{Z}}\left\{\gamma_{1}, \gamma_{2}\right\}$. Hence, $F=M \cap N=\operatorname{span}_{\mathbb{Z}}\left\{\gamma_{1}, \gamma_{2}\right\} \cong A A_{2}$. Then $\operatorname{ann}_{M}(F) \cong \operatorname{ann}_{N}(F) \cong E E_{6}$ and $L=M+N$ is of rank 14 .

Note that $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots, \gamma_{8}\right\}$ is a basis and $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3} \xi, \ldots, \gamma_{8} \xi\right\}$ is a basis of N. Therefore,

$$
\left\{\gamma_{1}, \gamma_{2}\right\} \cup\left\{\gamma_{3}, \ldots, \gamma_{8}\right\} \cup\left\{\gamma_{3} \xi, \ldots, \gamma_{8} \xi\right\}
$$

is a basis of L and the Gram matrix of L is given by

$$
\left[\begin{array}{cccccccccccccc}
4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 4 & -2 & 0 & 0 & 0 & -2 & 0 & -2 & 0 & 0 & 0 & 2 & 0 \\
0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & 0 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 & 4 & -2 & 2 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & -1 & -2 \\
0 & -2 & 0 & 1 & 0 & 0 & 2 & 0 & 4 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 \\
0 & 2 & -2 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 & 2 & 4
\end{array}\right]
$$

whose Smith invariant sequence is 11111111133366.
In this case, $\operatorname{ann}_{M}(F)+a n n_{N}(F) \cong A_{2} \otimes E_{6}$ and thus L contains a sublattice isometric to $A A_{2} \perp\left(A_{2} \otimes E_{6}\right)$.

References

[CS] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd Edition, Springer, New York, 1999.
[DLMN] C. Dong, H. Li, G. Mason and S. P. Norton, Associative subalgebras of Griess algebra and related topics, Proc. of the Conference on the Monster and Lie algebra at the Ohio State University, May 1996, ed. by J. Ferrar and K. Harada, Walter de Gruyter, Berlin - New York, 1998.
[FLM] I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied Math., Vol. 134, Academic Press, 1988.
[GlNo] G. Glauberman and S. P. Norton, On McKay's connection between the affine E_{8} diagram and the Monster, Proceedings on Moonshine and related topics (Montreal, QC, 1999), 37-42, CRM Proc. Lecture Notes, 30, Amer. Math. Soc., Providence, RI, 2001
[GMS] R. L. Griess, Jr., U. Meierfrankenfeld and Y. Segev, A uniqueness proof for the Monster, Ann. of Math.(2) 130 (1989), no. 3, 567-602.
$[\mathrm{GrO}+] \quad$ R. L. Griess, Jr., A vertex operator algebra related to E_{8} with automorphism group $\mathrm{O}^{+}(10,2)$. The Monster and Lie algebras (Columbus, OH, 1996), 43-58, Ohio State Univ. Math. Res. Inst. Publ., 7, de Gruyter, Berlin, 1998.
[Gr12] R. L. Griess, Jr., Twelve Sporadic Groups, Springer Verlag, 1998.
[GrPOE] Robert L. Griess, Jr, Pieces of Eight, Advances in Mathematics, 148, 75-104 (1999).
[GrBWY] R. L. Griess, Jr., Pieces of 2^{d} : existence and uniqueness for Barnes-Wall and Ypsilanti lattices, Adv. Math. 196 (2005), no. 1, 147-192.
[GrBWY2] Corrections and additions to " Pieces of 2^{d} : existence and uniqueness for Barnes-Wall and Ypsilanti lattices. " [Adv. Math. 196 (2005) 147-192], Advances in Mathematics 211 (2007) 819-824.
[GL] R. L. Griess Jr., and C. H. Lam, $E E 8$ lattices and dihedral groups, preprint, about 85 pages.
[GMS] R. L. Griess, Jr., U. Meierfrankenfeld and Y. Segev, A uniqueness proof for the Monster, Ann. of Math.(2) 130 (1989), no. 3, 567-602.
[LS] C.H.Lam and H. Shimakura, Ising vectors in the vertex operator algebra V_{Λ}^{+}associated with the Leech lattice Λ, Int. Math. Res. Not. (2007), Vol. 2007: article ID rnm132, 21 pages.
[LSY] C.H.Lam, S. Sakuma and H. Yamauchi, Ising vectors and automorphism groups of commutant subalgebras related to root systems, Math. Z. 255 (2007) 597-626.
[Mi] M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, J. Algebra 179 (1996), 523-548.
[Mi1] M. Miyamoto, A new construction of the moonshine vertex operator algebra over the real number field, Ann. of Math 159 (2004), 535-596.
[Sa] S. Sakuma, 6-transposition property of τ-involutions of vertex operator algebras, Int. Math. Res. Not. (2007), Vol. 2007 : article ID rnm030, 19 pages, doi:10.1093/imrn/rnm030.
(R. L. Griess, Jr.) Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA

E-mail address: rlg@umich.edu
(C. H. Lam) Department of Mathematics and National Center for Theoretical Sciences, National Cheng Kung University, Tainan, Taiwan 701

E-mail address: chlam@mail.ncku.edu.tw

[^0]: ${ }^{1}$ AMS classifications: 20C10 (integral representations of finite groups); 11H55 (quadratic forms); 11F22 (relations to Lie algebras and finite groups).

